Ontario’s Buy Local Renewable Energy Policy: An Update

Date: 15 Mar 2011 | posted in: Energy, Energy Self Reliant States | 0 Facebooktwitterredditmail

In January, we released a report – Maximizing Jobs From Clean Energy: Ontario’s ‘Buy Local’ Policy – highlighting the impressive job forecast (43,000 jobs) from Ontario’s CLEAN Contract (a.k.a. feed-in tariff) program.  News from the province suggests that the program is overcoming hurdles and continuing to grow. Forecasts for 2011 indicate that Ontario could become North … Read More

Distributed Solar PV Beats Grid Prices with “Balance of System” Cost Reductions

Date: 14 Mar 2011 | posted in: Energy, Energy Self Reliant States | 2 Facebooktwitterredditmail

Cutting non-module solar PV costs with best design practices could make solar PV cost less than grid electricity for more than 25 percent of Americans. Half of the installed cost of a solar PV array is the solar module, but the other half (the “balance of system”) involves labor, assembly, and other components.  With module prices … Read More

Court Strikes Down Federal Overreach in Grid Planning

Date: 11 Mar 2011 | posted in: Energy, Energy Self Reliant States | 0 Facebooktwitterredditmail

With the federal Energy Policy Act of 2005, Congress gave broad powers to the Department of Energy and the Federal Energy Regulatory Commission (FERC) to identify “congested” transmission corridors in order to prioritize new high-voltage transmission development and to provide higher financial returns to transmission development companies. The decision created a lot of controversy, since FERC … Read More

High Penetration of PV No Issue for Kauian Grid

Date: 10 Mar 2011 | posted in: Energy, Energy Self Reliant States | 0 Facebooktwitterredditmail

As long as the penetration of PV on the grid is low, the utility should have no trouble maintaining power quality as the output from PV systems fluctuate. However, even if overall PV penetration levels in a region are low, it is possible to have local “hot spots” where penetration on a single distribution circuit is very high. In this case utilities have concerns that power quality will suffer on that distribution circuit due to the high penetration of PV. [Kauai Island Utility Cooperative] KIUC is testing that hypothesis to the extreme with its 1.2 MW solar farm, by supplying 100% of a distribution circuit with PV during the day. [emphasis added]

Now for the good news: as the utility monitors the distribution circuit on sunny days and cloudy days, with the PV system turned on and the PV system turned off, they are seeing very little difference in the voltage levels, harmonics, and overall power quality between the different scenarios. These preliminary results suggest that utilities could go to very high levels of PV penetration in localized areas without causing problems for the grid. KIUC is continuing to monitor the system, but the initial results look very positive for the PV industry. [emphasis added]

Read More

U.S Grid Can Handle Lots of Solar PV with Low Integration Costs

Date: 10 Mar 2011 | posted in: Energy, Energy Self Reliant States | 0 Facebooktwitterredditmail

A state such as New York should be capable of absorbing and benefiting from well over 7 GW of high- value PV without having to incur significant integration costs beyond the cost of PV itself, further noting that the storage sizes involved could well be met with a smart deployment of interactive plug-in transportation...the low-cost penetration potential is large enough to allow for the development of a considerable localized, high-value PV generation market worth 100’s of GW in the US.

Read More

Penny-wise or Pound-Foolish Policies for Renewable Energy: Auctions and CLEAN Contracts

Date: 10 Mar 2011 | posted in: Energy, Energy Self Reliant States | 0 Facebooktwitterredditmail

Toby Couture is one of the pre-eminent experts on cost-effectiveness of renewable energy policies and his comparative analysis of  auctions (such as California recently adopted for distributed generation) and CLEAN Contracts (a.k.a. feed-in tariffs) is a must-read.

By Toby Couture, E3 Analytics

In his conclusion to a recent speech at the London School of Economics, Lord Turner, Chair of the Financial Services Authority in the UK, introduced an important distinction in reference to the financial crisis: he explained that “Stability matters a lot; minor gains in allocative efficiency matter little.”

The reference is specifically to the unprecedented financial innovation that occurred over the course of the last decade, innovation that was heralded by many within the sector as a means of improving the overall “efficiency” of the financial market. Efficiency in this context means that resources (financial and other) would be allocated in a way that would better promote human welfare.

As the economy continues to reel from the effects of the financial crisis, average citizens may be excused for failing to see the welfare gains that came from all this “innovation;” indeed, two years on, it is now generally acknowledged that this innovation was taken too far, and resulted in a net loss of welfare for society, and for the taxpayers who are now footing the bill.

One of the insights behind Lord Turner’s comment is that, in such situations, it is indeed possible for us to be penny-wise and pound-foolish, to put too much faith in efficiency at the expense of market stability.

Read more at wind-works.org…

Read More

An App for Distributed Electric Vehicle Charging

Date: 10 Mar 2011 | posted in: Energy, Energy Self Reliant States | 0 Facebooktwitterredditmail

A new iPhone app is networking electric vehicle owners, letting them share their outlets to expand the charging options for new plug-in hybrid and all-electric cars. 

On Monday, Xatori released PlugShare, a free iPhone app that lets drivers and outlet owners locate and offer electricity.

“We want to break down that barrier in people’s minds about where it’s acceptable to charge,” said Armen Petrosian, Xatori’s co-founder and chief technology officer. “We think the infrastructure to charge is everywhere.” [emphasis added]
 

Drivers can punch in their destination to see the availability of shared outlets as well as public charging stations along their route.

People who want to share their electricity indicate what type of outlet or charger they have, how to gain access and their preferred method of contact. Given that most outlets are located in locked garages or otherwise behind closed doors, Xatori expects plug sharers will ask drivers to schedule a time to charge by calling or sending a text message.

A great illustration of how distributed resources can help meet a new technological need.  For more on electric vehicles (in the Midwest), check out our 2009 scoping report, Electric Vehicle Policy For the Midwest – A Scoping Document.

Update 3/16/11: Google added EV charging stations to Google Maps.

Read More

Is the Bloom Box Cheaper Than Solar?

Date: 10 Mar 2011 | posted in: Energy, Energy Self Reliant States | 0 Facebooktwitterredditmail

A month ago, I compared the fuel cell Bloom Box to distributed solar PV.  I’m not linking the posts, because I’ve updated my cost models for both technologies thanks to some good input from others.  The revised analysis follows. 

Update 3/15/11: The data in the text was accurate, but I had a labeling error in the chart. It’s fixed now.

The Bloom Box provides a plug-and-play approach to on-site electricity, using natural gas-powered fuel cells to provide stable, on-demand power.  While it competes favorably with solar PV, its cost is competitive in just a few states with high electricity prices.

Bloom Box v. Grid

Only three states (New York, Connecticut, and Hawaii) have average retail electricity prices for the commercial sector higher than the break-even price (14.7 cents) for the Bloom Box’s electricity (with natural gas at $9 per million BTU), assuming the user is able to use federal tax incentives and accelerated depreciation. A number of states (including New York, New Jersey, and California) also have state rebates for fuel cells. The following map illustrates the states where the Bloom Box breakeven price is equal to or lower than the retail electricity price for commercial users. (In blue states, the Bloom Box competes with only federal incentives; in green states, it competes with additional state incentives.)

The number of states where Bloom Boxes would make economic sense would be higher, but a recent story from Greentech Media noting that the oft cited price for a Bloom Box ($700,000-800,000) was incorrect. Instead, the unit retails for $1,250,000 with a 10-year warranty, essential because the fuel cells will require replacement at least once in that span.

Bloom Box v. Distributed Solar PV

The Bloom Box performs well compared to distributed solar PV, especially in less sunny climates. At $5 per watt, a competitive price for commercial scale installations, solar PV in sunny Phoenix and Los Angeles costs 12.3 and 14.1 cents per kilowatt hour, respectively; in New York City, solar PV costs 17.5 cents. (all prices include federal tax and depreciation incentives). Six of the 16 largest metropolitan areas (with a cumulative population of 36 million) have solar PV prices lower than the Bloom Box price, although not by a lot.

The Bloom Box and solar differ in one significant way, however. The Bloom Box produces electricity on demand and round the clock, whereas a solar PV project only produces electricity during daylight hours.

When comparing the Bloom Box to a solar PV power plant with varying storage capacities, the Bloom Box is more cost-effective, even in sunny regions.

However, even this quantitative analysis leaves out a number of additional considerations: If the goal is to provide stable, baseload power, then the PV system would need longer storage (at least in winter months with fewer daylight hours). This is especially true if the power plant is an off-grid application.

If the goal is instead to offset grid electricity, especially peak power, then the PV system may make more sense. It produces power during peak hours (when prices are higher), and even a small amount of storage capacity would be sufficient to smooth out variability during the day (e.g. periods of clouds), as well as to extend production into the high-priced, late afternoon peak period.

Additionally, the operations cost for the Bloom Box will fluctuate with fuel prices, and there are more carbon emissions associated with a fuel cell operating on natural gas than with a solar PV array (zero).

Bloom Box Financing

Bloom is emulating the creative financing tools of the solar market with a power purchase alternative to buying the fuel cells. Businesses sign a 10-year power purchase agreement at a discount to their current electricity rates and Bloom handles installation, maintenance, fuel purchasing, etc. The service mimics a popular strategy for installing solar PV on residential and commercial rooftops. Bloom purportedly offers a 5 to 20 percent discount to California’s 14-cent per kilowatt-hour average commercial electricity price, so the power purchase arrangement would likely only work in states with comparable or higher electricity rates.

Overall, the “power-in-a-box” concept can serve commercial and industrial enterprises with round-the-clock power needs very well and it’s a promising start for distributed electricity production from fuel cells. As prices for both technologies fall, the Bloom Box fuel cell and solar PV power plant will be complementary components of a distributed grid.

Read More

1 68 69 70 71 72 73 74 115